金考卷2023年普通高等学校招生全国统一考试 新高考卷 押题卷(八)数学试卷答案,我们目前收集并整理关于金考卷2023年普通高等学校招生全国统一考试 新高考卷 押题卷(八)数学得系列试题及其答案,更多试题答案请关注我们
金考卷2023年普通高等学校招生全国统一考试 新高考卷 押题卷(八)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是①②④.(把你认为正确结论的序号都写上)
①若f(x1)≤f(x2)对任意实数x恒成立,则x2-x1必定是$\frac{π}{2}$的整数倍;
②y=f(x)的图象关于($\frac{4π}{3}$,0)对称;
③对于函数y=|f(x)|(x∈R)的图象,x=-$\frac{5π}{12}$一定是一条对称轴且相邻两条对称轴之间的距离是$\frac{π}{2}$;
④函数f(x)在每一个[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有严格的单调性.
分析由已知条件利用累加法求出an=2n2-2n+98,得到$\frac{{a}_{n}}{n}$,然后利用基本不等式求得数列$\left\{{\frac{a_n}{n}}\right\}$的最小项.
解答解:∵数列{an}中,a2=102,an+1-an=4n,
∴an-an-1=4(n-1),
…
a4-a3=4×3,
a3-a2=4×2,
以上等式相加,得
an-a2=4×2+4×3+…+4×(n-1)
=4(2+3+…+n-1)
=2(n+1)(n-2).
∴an=2n2-2n+98.
∴$\frac{{a}_{n}}{n}$=2n+$\frac{98}{n}$-2≥2$\sqrt{2n•\frac{98}{n}}$-2=26,
当且仅当$\frac{98}{n}$=2n,即n=7时,等式成立.
∴数列{$\frac{{a}_{n}}{n}$}的最小项是第7项.
故选:B.
点评本题考查数列的最小项的求法,是中档题,解题时要认真审题,注意累加法和均值不等式的合理运用.
金考卷2023年普通高等学校招生全国统一考试 新高考卷 押题卷(八)数学