赢战高考2024高考模拟冲刺卷(三)数学
赢战高考2024高考模拟冲刺卷(三)数学试卷答案,我们目前收集并整理关于赢战高考2024高考模拟冲刺卷(三)数学得系列试题及其答案,更多试题答案请关注我们
赢战高考2024高考模拟冲刺卷(三)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
必修二UNIT4TOPICTALK,LESSONS1&2综合评估参考答案及部分解析参考答案1-5BACAC6-10CACBA11-15BACAC16-20BCBAB21-25CCDCB26-30AAABA31-35AABCA36-40DGBAE41-45BADAD46-50CBCAA51-55BDCBA56.a57.being58.looks59.and60.powerful61.them62.what63.kinds64.finally65.tobring写作第一节Onepossibleversion:I'mateenager,andIpersonallythinkthatformostteenagers,theirfriendsaremoreimportantthantheirfamily.Teenagersspendalotoftimewiththeirfriendsbothatschoolandoutsideschool.Theyusuallygetonbetterwiththeirfriendsthantheirfamily.Theyarethesameage,sotheysharethesametastesinmusic,clothesandsoon.Whentheyhaveproblems,theytendtoasktheirfriendsforhelpandadvice.Althoughteenagersstillrelyheavilyontheirparents,theirfriendsareoftenmuchmoreimportanttothematthisstage.第二节Onepossibleversion:Then,Iknewwhathadhappenedtomyarticle.Atsomepointwhilemyarticlewasstillopenonmyscreen,Imusthavelefttheroom.WhileIwasaway,Cococameouttoplay!Hemusthavedoneahappydanceontheletter"n"andthenflownawaybeforeIreturned.WhenIdecidedtoclosethewindow,Ididsowithoutfirstcheckingmywork.So,Isaveditwithallthosen's.Nowonderthecompanyrefusedme!Ieditedmypiececarefully,thistimemakingsureitwasperfectbeforeclosingthewindow.Iwroteacovere-mailcontainingaheartfeltapologyandexplainedwhatIthoughthadhappened.AfterIsenttheletter,Iwonderedaboutmywisdom.Itreallydidsoundlikeanexcuse.However,itseemedtodothetrick.Afewdayslater,Isignedmyletterofacceptancetoworkwiththecompany.【补充说明】dothetrick奏效;起作用;达到目的部分解析阅读第一节A篇主题语境:人与社会一一历史、社会与文化本文是应用文
文章介绍了英国的四个图书馆
21.C
理解具体信息
根据StBrideFoundationLibrary部分中的StBrideLibrary..oneoftheworld'smostimportantcollectionsofbooksaboutprinting..thecollectionsexpandedtoinclude
分析(1)求得函数的对称轴,讨论[2,4]为递增区间或递减区间,即有$\frac{a}{2}$≤2,或$\frac{a}{2}$≥4,解不等式即可得到所求范围;
(2)讨论对称轴和区间的关系,分当$\frac{a}{2}$≤0时,当0<$\frac{a}{2}$<2时,当$\frac{a}{2}$≥2时,结合单调性,可得最小值,解方程可得a的值.
解答解:(1)函数f(x)=4x2-4ax+a2-2a+2的对称轴为x=$\frac{a}{2}$,
若函数在区间[2,4]为单调递增函数,即有$\frac{a}{2}$≤2,解得a≤4;
若函数在区间[2,4]为单调递减函数,即有$\frac{a}{2}$≥4,解得a≥8.
则实数a的取值范围为a≥8或a≤4;
(2)当$\frac{a}{2}$≤0时,即a≤0时,函数在区间[0,2]上单调递增,
函数的最小值为f(0)=a2-2a+2=2,解得a=0或2(舍去);
当0<$\frac{a}{2}$<2时,即0<a<4时,函数的最小值为f($\frac{a}{2}$)=2-a=2,
解得a=0(舍去);
当$\frac{a}{2}$≥2,即a≥4时,函数在区间[0,2]上单调递减,
函数的最小值为f(2)=a2-10a+18=2,解得a=8或2(舍去).
综上可得,a=0或a=8.
点评本题主要考查求二次函数在闭区间上的最值,体现了分类讨论的数学思想,同时考查单调性的运用,属于中档题.