2024届衡水金卷先享题 调研卷(重庆专版)一数学
2024届衡水金卷先享题 调研卷(重庆专版)一数学试卷答案,我们目前收集并整理关于2024届衡水金卷先享题 调研卷(重庆专版)一数学得系列试题及其答案,更多试题答案请关注我们
2024届衡水金卷先享题 调研卷(重庆专版)一数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
札记n咖lfankerhherep水ofhiresnAmro
idndihichhwedtheirhousesandfurnitureshakingforseveraminedurngthLucyPreentofPeruhispopbrthrethtbridgemyhveclpnyodscohavebeenmgfirst-handandplentifTheheadofPeru'sNationalEmergencyOperationsCentersaidthedeathsofardiscoveredoccurredwhensubstitutedetroyedbykhhellonthistriersipeoperehavLucypltaisandtwgfirefightershavenpictureromYmhowingtheolaphousPowercutsweresheetsImfindamatnumberofAmazoniancities.EukeemothinginPeru,whichlienthePacific'so-caldRingfre,nreaeshellsandWhilmosoftheortken.mgntudetquakeledtoadeadlylandslidewhichoettheproduabout70,000people.Morerecently,500peoplediedduringasimilar-sizedquakenearLimain2007.15.What11.Whatcanwelearnaboutthelargeearthquake?A.HA.Itcausedonlyonedeathasyet.B.Thevideosaboutitfrightenedpeople.C.TC.Itsepicenterwas160milesfromLima.D.ItknockeddownpowerlinesacrossPeru.16.Wha12.WhatdidthepresidentofPerudoduringthelargeearthquake?A.A.Hetoldhispeoplenottopanic.C.AB.Heintroducedthegeneralsituationofit.17.WhaC.Heencouragedpeopletogototheworst-hitarea.A.D.HesuggestedrebuildingthedamagedbridgequicklyB.13.Whatisthefourthparagraphmainlyabout?A.Therescuework.D.C.Thecurrentdamageoftheearthquake.B.Thesceneoftheearthquake.18.Wh14.Whatcanwelearnfromthelastparagraph?D.Thedeathsandinjuriesintheearthquake.AA.EarthquakesinPeruoftenleadtolandslides.B.MostearthquakeshappennearLimainPeru.C.C.EarthquakesinPerudon'tusuallykillmanypeople.D.D.EarthquakesarecommoninPeruduetoitslocation.【答案与【答案与解析】年本文介绍了秘鲁一次8.0级大地震的有关情况以及该国频繁发生地震的原因
没有危11.A根据第2段第1句和第4段第1句可知,这次地震目前仅造成一人死亡
15.C12.A根据第3段第1句可知,秘鲁总统在前往受灾最严重的地区之前让民众保持冷静16.D13.C根据第4段内容可知,本段主要讲述这次地震目前造成的伤亡以及对建筑物、电力等造成的破坏
17.B14.D根据最后一段可知,在秘鲁经常发生地震,因为它的地理位置特殊,处在环太平洋火山带上
【命象BA23-year-oldproductdesignstudentfromUniversityofSussex,LucyHughes,hastakeninspirationfromtheseas【银tofindasolutiontotheplasticpollution.Shehasinventedabioplasticcreatedfromfishskinandscales(andred18.Aalgae()whichcouldhaveahugeimpactonlimitingtheamountofnon-biodegradableplasticwaste.第三音Thenewly-developedmaterial,calledMarinaTex,canbreakdowninasoilenvironmentinfourtosixweeksandcanbedisposedofthroughordinaryfoodwastecollections.Itisalsocheapertoproduceandstrongerthanastandardplasticbag.toldr"I'mnotalone.Thereisagrowingcommunityofbioplasticpioneersworkingtowardsfindingalternativestoourreizenlianceonplastic."Luysaid.Wearetransformingawastestreamintothemaincomponentofanewproduct.Bydoingso,wehavecreatedaplastic-like'materialmoreplanet-friendlywithappropriatelifecycleforpackaging.Itdoesnotday¥giveoffpoisonsintothenaturalenvironment."HowBut◇金太阳AB创新卷·英语(滚动卷)◇2022.11.1117:47
分析(1)求导f′(x)=1+1nx,从而由导数的正负确定函数的单调性;
(2)构造函数F(x)=f(x)-g(x)=x•1nx-ax2+2ax-1,从而求导F′(x)=1+lnx-2ax+2a,F″(x)=$\frac{1}{x}$-2a,从而确定函数的最小值即可.
解答解:(1)∵f(x)=x•1nx,f′(x)=1+1nx,
故当x∈(0,$\frac{1}{e}$)时,f′(x)<0;
当x∈($\frac{1}{e}$,+∞)时,f′(x)>0;
故f(x)的单调减区间为(0,$\frac{1}{e}$),
单调增区间为($\frac{1}{e}$,+∞);
(2)证明:令F(x)=f(x)-g(x)=x•1nx-ax2+2ax-1,
故F′(x)=1+lnx-2ax+2a,F″(x)=$\frac{1}{x}$-2a,
∵x∈[1,2],a∈[1,2],
∴F″(x)=$\frac{1}{x}$-2a<0,
∴F′(x)在[1,2]上是减函数,
又∵F′(1)=1+0=1>0,F′(2)=1+ln2-4a+2a=1+ln2-2a<0,
∴F(x)在[1,2]上先增后减,
故F(x)的最小值在x=1或x=2上取得,
而F(1)=1ln1-a+2a-1=a-1≥0,(a∈[1,2]);
F(2)=2ln2-4a+4a-1=2ln2-1=ln4-1>0,
故F(x)≥0恒成立,即f(x)≥g(x).
点评本题考查了导数的综合应用及恒成立问题与函数思想的应用.构造函数F(x)=f(x)-g(x)是关键.