[宜宾三诊]2023届宜宾市普通高中2020级第三次诊断性测试数学试卷答案,我们目前收集并整理关于[宜宾三诊]2023届宜宾市普通高中2020级第三次诊断性测试数学得系列试题及其答案,更多试题答案请关注我们
[宜宾三诊]2023届宜宾市普通高中2020级第三次诊断性测试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
18.某企业产品的成本前两年递增20%,经过引进的技术设备,并实施科学管理,后两年的产品成本每年递减20%,那么该企业产品的成本现在与原来比较( )
A. | 不增不减 | B. | 增多了 | ||
C. | 减少了 | D. | 以原来的成本大小有关 |
分析将已知式平方并利用sin2A+cos2A=1,算出sinAcosA=-$\frac{481}{1250}$<0,结合A∈(0,π)得到A为钝角,由此可得△ABC是钝角三角形.
解答解:∵sinA+cosA=$\frac{12}{25}$,
∴两边平方得(sinA+cosA)2=$\frac{144}{625}$,即sin2A+2sinAcosA+cos2A=$\frac{144}{625}$,
∵sin2A+cos2A=1,
∴1+2sinAcosA=$\frac{144}{625}\frac{1}{2}$,解得sinAcosA=$\frac{1}{2}$($\frac{144}{625}$-1)=-$\frac{481}{1250}$<0,
∵A∈(0,π)且sinAcosA<0,
∴A∈($\frac{π}{2}$,π),可得△ABC是钝角三角形
故选:A.
点评本题给出三角形的内角A的正弦、余弦的和,判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识,属于基础题.
[宜宾三诊]2023届宜宾市普通高中2020级第三次诊断性测试数学