欢迎光临
我们一直在努力

百师联盟2023届高三开年摸底联考新高考卷数学试卷 答案(更新中)

百师联盟2023届高三开年摸底联考新高考卷数学试卷答案,我们目前收集并整理关于百师联盟2023届高三开年摸底联考新高考卷数学得系列试题及其答案,更多试题答案请关注我们

试题答案

百师联盟2023届高三开年摸底联考新高考卷数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

2.若函数f(x)=lnx+$\frac{a}{x+1}$(a∈N)在(1,3)上只有一个极值点,则a的取值个数是(  )

A. 1 B. 2 C. 3 D. 4

分析分别在原式两边乘以M,再乘以N(最小公倍数),再根据整数的性质和假设的方式,使得命题得以证明.

解答证明:当m=1时,a1=$\frac{1}{2}$,显然不是整数,结论成立.
下面证明,当m≥2时,am=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{2^m}$也不可能是整数.
设S=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{2^m}$,令M=2m,在S两边同时乘以M得:MS=$\frac{M}{2}$+$\frac{M}{3}$+$\frac{M}{4}$+…+1,
等式右边的每一项$\frac{M}{k}$(k=1,2,3,…,2m),要么是整数,要么是一个分母为奇数的不可约分数,
再来考察那些分母为奇数的不可约分数的项.
因为m≥2,故在所有的分母当中(都是奇数)必定存在一个最大的奇素数,
设它为p,这样在分母中去掉p,设余下的奇数的最小公倍数为N,
在MS=$\frac{M}{2}$+$\frac{M}{3}$+$\frac{M}{4}$+…+1两边再同时乘以N,得到MNS=$\frac{MN}{2}$+$\frac{MN}{3}$+$\frac{MN}{4}$+…+N.
等式右边的每一项$\frac{MN}{k}$(k=1,2,3,…,…,2m),仅当k=p时,$\frac{MN}{k}$不是整数,其他的项都是整数.
所以等式右边最后得到的不是整数,因此,等式左边的MNS也不是整数,
显然,若S是整数,那么就与MNS不是整数相矛盾!
所以am不可能是整数.证毕.

点评本题主要考查了整数的性质,涉及到整除,素数,最小公倍数等知识点,通过多次构造使得命题得以证明,属于难题.

百师联盟2023届高三开年摸底联考新高考卷数学

赞(0)
未经允许不得转载:答案联动网 » 百师联盟2023届高三开年摸底联考新高考卷数学试卷 答案(更新中)
0.961秒内查询了55次数据库