安徽省2022~2023第一学期高一年级12月联考(231301D)数学试卷答案,我们目前收集并整理关于安徽省2022~2023第一学期高一年级12月联考(231301D)数学得系列试题及其答案,更多试题答案请关注我们
安徽省2022~2023第一学期高一年级12月联考(231301D)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.某数学老师身高179cm,他爷爷、父亲和儿子的身高分别是176cm、173cm和185cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测孙子的身高,已知父亲与儿子身高如表一:
父亲身高x(cm) | 176 | 173 | 179 |
儿子身高y(cm) | 173 | 179 | 185 |
(方案一):借助(公式1)求$\stackrel{∧}{b}$,借助(公式3),求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案二):借助(公式2)求$\stackrel{∧}{b}$,借助(公式3)求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案三):令X=x-173,Y=y-179,则(表一)转化成诶面的(表二).
X | 3 | 0 | 6 |
Y | -6 | 0 | 6 |
结合数据特点任选一种方案,求y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并根据回归直线预测数学教师的孙子的身高.
分析利用$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$,可得$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥$\frac{a+b}{2}$-$\sqrt{ab}$,结合不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,即可得出正数λ的取值范围.
解答解:∵$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$,
∴$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥$\frac{a+b}{2}$-$\sqrt{ab}$,
∵不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,λ>0
∴0<λ≤1.
故选:A.
点评本题考查正数λ的取值范围,考查基本不等式的运用,考查学生的计算能力,正确运用$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$是关键.
安徽省2022~2023第一学期高一年级12月联考(231301D)数学