2023届百万联考高三11月联考(2007C QG)数学试卷答案,我们目前收集并整理关于2023届百万联考高三11月联考(2007C QG)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届百万联考高三11月联考(2007C QG)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.已知函数f(x)=${4}^{x-\frac{1}{2}}$-m•2x-1(0≤x≤2).
(1)若m=2,求函数f(x)的最大值和最小值;
(2)若f(x)>0对任意x∈[0,2]恒成立,求实数m的取值范围.
分析由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,求出数列的前3项,再利用等比数列的性质能求出x.
解答解:∵等比数列{an}的前n项和Sn=x•3n-1-$\frac{1}{6}$,
∴${a}_{1}={S}_{1}=x-\frac{1}{6}$,
${a}_{2}={S}_{2}-{S}_{2}=(3x-\frac{1}{6})-(x-\frac{1}{6})=2x$,
a3=S3-S2=$(9x-\frac{1}{6})-(3x-\frac{1}{6})$=6x,
∴由等比数列的性质得$(2x)^{2}=(x-\frac{1}{6})•6x$,
解得x=$\frac{1}{2}$或x=0(舍),
∴x=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评本题考查等比数列中实数值的求法,是基础题,解题时要注意公式由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$和等比数列的性质的合理运用.
2023届百万联考高三11月联考(2007C QG)数学