神州智达 2023届高三省级联测考试摸底卷(一)1数学试卷答案,我们目前收集并整理关于神州智达 2023届高三省级联测考试摸底卷(一)1数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
神州智达 2023届高三省级联测考试摸底卷(一)1数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
16.已知数列{an}的首项a1=$\frac{1}{4}$的等比数列,其前n项和Sn中S3=$\frac{3}{16}$,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log${\;}_{\frac{1}{2}}$|an|,Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,求Tn.
分析若方程ex=ax+b(a>0,b∈R)有相等根,则等价为y=ax+b是f(x)=ex的切线,求函数的导数,利用导数的几何意义求出切线方程,建立a,b的关系,利用导数研究函数的最值和极值即可得到结论.
解答解:设函数f(x)=ex,
若方程ex=ax+b(a>0,b∈R)有相等根,
则等价为y=ax+b是f(x)=ex的切线,
设切点为(x0,${e}^{{x}_{0}}$),
则f′(x)=ex,
则切线斜率k=f′(x0)=${e}^{{x}_{0}}$,
则对应的切线方程为y-${e}^{{x}_{0}}$=${e}^{{x}_{0}}$(x-x0),
即y=${e}^{{x}_{0}}$x+${e}^{{x}_{0}}$(1-x0),
∵y=ax+b是f(x)=ex的切线,
∴a=${e}^{{x}_{0}}$,b=${e}^{{x}_{0}}$(1-x0),
即x0=lna,则b=a(1-lna),
则a+b=a+a(1-lna)=2a-alna,
设g(a)=2a-alna,
则g′(a)=2-(lna+1)=1-lna,
由g′(a)<0得a>e,此时函数单调递减,
由g′(a)>0得0<a<e,此时函数单调递增,
即当a=e时,函数g(a)=2a-alna取得极大值同时也是最大值g(e)=2e-elne=2e-e=e,
即a+b的最大值为e,
故答案为:e
点评本题主要考查函数最值的求解,根据条件转化为求函数的切线问题,利用导数研究函数的极值是解决本题的关键.综合性较强,难度较大.
神州智达 2023届高三省级联测考试摸底卷(一)1数学