欢迎光临
我们一直在努力

安徽省2022-2023学年七年级教学质量检测(七)数学试卷 答案(更新中)

安徽省2022-2023学年七年级教学质量检测(七)数学试卷答案,我们目前收集并整理关于安徽省2022-2023学年七年级教学质量检测(七)数学得系列试题及其答案,更多试题答案请关注我们

试题答案

安徽省2022-2023学年七年级教学质量检测(七)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

2.求适合下列条件的双曲线的标准方程:
(1)渐近线方程为2x±3y=0,且过点P($\sqrt{6}$,2)
(2)与椭圆$\frac{{x}^{2}}{47}$+$\frac{{y}^{2}}{22}$=1有公共焦点,且离心率e=$\frac{5}{4}$.

分析原不等式可等价为:arctana-a≤arctanb-b,只需构造函数f(x)=arctanx-x,再运用函数的单调性证明不等式.

解答证明:∵正切函数y=tanx在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增,
∴其反函数y=arctanx在R上也单调递增,
不妨设,a≥b,原不等式可化为:arctana-arctanb≤a-b,
因此,原不等式等价为:arctana-a≤arctanb-b,—–①
要证不等式①成立,只需构造函数,f(x)=arctanx-x,x∈R,
f’(x)=$\frac{1}{1+x^2}$-1=-$\frac{x^2}{1+x^2}$≤0恒成立,
所以,f(x)在R上单调递减,
由于a≥b,所以f(a)≤f(b),
即arctana-a≤arctanb-b,
所以,|arctana-arctanb|≤|a-b|.
说明:本题也可以利用“拉格朗日中值定理”证明.

点评本题主要考查了运用导数证明不等式,涉及正切,反正切函数的性质,导数的运算,以及函数单调性的确定,属于中档题.

安徽省2022-2023学年七年级教学质量检测(七)数学

赞(0)
未经允许不得转载:答案联动网 » 安徽省2022-2023学年七年级教学质量检测(七)数学试卷 答案(更新中)
0.636秒内查询了49次数据库