山东省恒台一中2022-2023高三第二次模拟考试数学试卷(含解析)
2023年高考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.不等式的解集记为,有下面四个命题:;;;.其中的真命题是( )
A. B. C. D.
2.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )
A. B.
C. D.
3.数列的通项公式为.则“”是“为递增数列”的( )条件.
A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要
4.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是( )
A. B. C. D.
5.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )
A. B. C. D.
6.将函数向左平移个单位,得到的图象,则满足( )
A.图象关于点对称,在区间上为增函数
B.函数最大值为2,图象关于点对称
C.图象关于直线对称,在上的最小值为1
D.最小正周期为,在有两个根
7.若复数满足,则( )
A. B. C. D.
8.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )
A. B.4 C.2 D.
9.设全集为R,集合,,则
A. B. C. D.
10.已知是虚数单位,则( )
A. B. C. D.
11.设则以线段为直径的圆的方程是( )
A. B.
C. D.
12.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________.
14.已知全集为R,集合,则___________.
15.在中, ,,则_________.
16.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.
(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;
(2)若点,为曲线上两动点,且满足,求面积的最大值.
18.(12分)如图,在四面体中,.
(1)求证:平面平面;
(2)若,二面角为,求异面直线与所成角的余弦值.
19.(12分)设函数,.
(1)解不等式;
(2)若对任意的实数恒成立,求的取值范围.
20.(12分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.
(1)证明:平面.
(2)求直线与平面所成角的正弦值.
21.(12分)在角中,角A、B、C的对边分别是a、b、c,若.
(1)求角A;
(2)若的面积为,求的周长.
22.(10分)已知函数.
(1)若曲线的切线方程为,求实数的值;
(2)若函数在区间上有两个零点,求实数的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.
【详解】
作出可行域如图所示,当时,,即的取值范围为,所以为真命题;
为真命题;为假命题.
故选:A
【点睛】
此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.
2、D
【解析】
由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.
【详解】
由题意,设第次爬行后仍然在上底面的概率为.
①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;
②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,
两种事件又是互斥的,∴,即,∴,
∴数列是以为公比的等比数列,而,所以,
∴当时,,
故选:D.
【点睛】
本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.
3、A
【解析】
根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.
【详解】
若“是递增数列”,则,
即,化简得:,
又,,,
则是递增数列,是递增数列,
“”是“为递增数列”的必要不充分条件.
故选:.
【点睛】
本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.
4、B
【解析】
考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.
【详解】
因为的图象上关于原点对称的点有2对,
所以时,有两个不同的实数解.
令,则在有两个不同的零点.
又,
当时,,故在上为增函数,
在上至多一个零点,舍.
当时,
若,则,在上为增函数;
若,则,在上为减函数;
故,
因为有两个不同的零点,所以,解得.
又当时,且,故在上存在一个零点.
又,其中.
令,则,
当时,,故为减函数,
所以即.
因为,所以在上也存在一个零点.
综上,当时,有两个不同的零点.
故选:B.
【点睛】
本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.
5、A
【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.
【详解】
对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、、都是假命题.
故选:A
【点睛】
本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.
6、C
【解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.
【详解】
函数,
则,
将向左平移个单位,
可得,
由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;
对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;
对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;
综上可知,正确的为C,
故选:C.
【点睛】
本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.
7、B
【解析】
由题意得,,求解即可.
【详解】
因为,所以.
故选:B.
【点睛】
本题考查复数的四则运算,考查运算求解能力,属于基础题.
8、B
【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.
【详解】
解:抛物线焦点,准线,
过作交于点,连接
由抛物线定义,
,
当且仅当三点共线时,取“=”号,
∴的最小值为.
故选:B.
【点睛】
本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.
9、B
【解析】
分析:由题意首先求得,然后进行交集运算即可求得最终结果.
详解:由题意可得:,
结合交集的定义可得:.
本题选择B选项.
点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.
10、B
【解析】
根据复数的乘法运算法则,直接计算,即可得出结果.
【详解】
.
故选B
【点睛】
本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.
11、A
【解析】
计算的中点坐标为,圆半径为,得到圆方程.
【详解】
的中点坐标为:,圆半径为,
圆方程为.
故选:.
【点睛】
本题考查了圆的标准方程,意在考查学生的计算能力.
12、D
【解析】
做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.
【详解】
作出函数的图象如图所示,由图可知
方程在上有3个不同的实数根,
则在上有4个不同的实数根,
当直线经过时,;
当直线经过时,,
可知当时,直线与的图象在上有4个交点,
即方程,在上有4个不同的实数根.
故选:D.
【点睛】
本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、18
【解析】
根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.
【详解】
解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,
已知其中三个个体的编号为5,31,44,
故还有一个抽取的个体的编号为18,
故答案为:18
【点睛】
本题主要考查系统抽样的定义和方法,属于简单题.
14、
【解析】
先化简集合A,再求A∪B得解.
【详解】
由题得A={0,1},
所以A∪B={-1,0,1}.
故答案为{-1,0,1}
【点睛】
本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.
15、
【解析】
先由题意得:,再利用向量数量积的几何意义得,可得结果.
【详解】
由知:,则在方向的投影为,
由向量数量积的几何意义得:
,∴
故答案为
【点睛】
本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.
16、
【解析】
由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.
【详解】
如图,连接,,,∵分别为棱的中点,∴,
又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.
故答案为:.
【点睛】
本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)
【解析】
(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.
(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.
【详解】
(1)由题意得:,:
因为曲线和相切,所以,即:;
(2)设,
所以
所以当时,面积最大值为
【点睛】
本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.
18、(1)证明见解析
(2)
【解析】
(1)取中点连接,得,可得,
可证,可得,进而平面,即可证明结论;
(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.
【详解】
(1)证明:取中点连接,
由则
,则,
故,,
平面,又平面,
故平面平面
(2)解法一:设分别为边的中点,
则,
(或补角)是异面直线与所成的角.
设为边的中点,则,
由知.
又由(1)有平面,
平面,
所以为二面角的平面角,,
设则
在中,
从而
在中,,
又,
从而在中,因,
,
因此,异面直线与所成角的余弦值为.
解法二:过点作交于点
由(1)易知两两垂直,
以为原点,射线分别为轴,
轴,轴的正半轴,建立空间直角坐标系.
不妨设,由,
易知点的坐标分别为
则
显然向量是平面的法向量
已知二面角为,
设,则
设平面的法向量为,
则
令,则
由
由上式整理得,
解之得(舍)或
,
因此,异面直线与所成角的余弦值为.
【点睛】
本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.
19、 (1);(2)
【解析】
试题分析:
(1)将绝对值不等式两边平方,化为二次不等式求解.(2)将问题化为分段函数问题,通过分类讨论并根据恒成立问题的解法求解即可.
试题解析:
整理得
解得
①
②
解得
③
,且无限趋近于4,
综上的取值范围是
20、(1)证明见解析 (2)
【解析】
(1)先证,再证,由可得平面 ,从而推出平面 ;(2) 建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.
【详解】
(1)证明:连接,,由图1知,四边形为菱形,且,
所以是正三角形,从而.
同理可证,,
所以平面.
又,所以平面,
因为平面,
所以平面平面.
易知,且为的中点,所以,
所以平面.
(2)解:由(1)可知,,且四边形为正方形.设的中点为,
以为原点,以,,所在直线分别为,,轴,建立空间直角坐标系,
则,,,,,
所以,,.
设平面的法向量为,
由得
取.
设直线与平面所成的角为,
所以,
所以直线与平面所成角的正弦值为.
【点睛】
本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.
21、(1);(2)1.
【解析】
(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.
(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.
【详解】
(1)由题意,在中,因为,
由正弦定理,可得sinAsinB=sinBcosA,
又因为,可得sinB≠0,
所以sinA=cosA,即:tanA=,
因为A∈(0,π),所以A=;
(2)由(1)可知A=,且a=5,
又由△ABC的面积2=bcsinA=bc,解得bc=8,
由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,
整理得(b+c)2=49,解得:b+c=7,
所以△ABC的周长a+b+c=5+7=1.
【点睛】
本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
22、(1);(2)或
【解析】
(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;
(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.
【详解】
(1)依题意,,,
设切点为,,
故,
故,则;
令,,
故当时,,
当时,,
故当时,函数有最小值,
由于,故有唯一实数根0,
即,则;
(2)由,得.
所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;
由于.
由,解得,.
当变化时,与的变化情况如下表所示:
3
0 + 0
极小值 极大值
所以在,上单调递减,在上单调递增.
又因为,,
,,
故当或时,直线与曲线在上有两个交点,
即当或时,函数在区间上有两个零点.
【点睛】
本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.