山东省菏泽市2023届高考考前模拟数学试题(含解析)
2023年高考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为( )
A. B.
C. D.
2.已知抛物线y2= 4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则 的最小值为( )
A. B. C.l D.1
3.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为( )
A. B. C. D.
4.设等差数列的前项和为,若,,则( )
A.21 B.22 C.11 D.12
5.已知是虚数单位,若,则( )
A. B.2 C. D.10
6.已知集合A={x|–1
A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)
7.等比数列的前项和为,若,,,,则( )
A. B. C. D.
8.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )
A.圆,但要去掉两个点 B.椭圆,但要去掉两个点
C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点
9.若函数的图象如图所示,则的解析式可能是( )
A. B. C. D.
10.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则( )
A. B.
C. D.
11.已知变量的几组取值如下表:
1 2 3 4
7
若与线性相关,且,则实数( )
A. B. C. D.
12.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.
14.已知平面向量,的夹角为,且,则=____
15.不等式对于定义域内的任意恒成立,则的取值范围为__________.
16.若的展开式中各项系数之和为32,则展开式中x的系数为_____
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数
(1)当时,若恒成立,求的最大值;
(2)记的解集为集合A,若,求实数的取值范围.
18.(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)判断点与直线的位置关系并说明理由;
(Ⅱ)设直线与曲线的两个交点分别为,,求的值.
19.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值以及此时的直角坐标.
20.(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意 不满意
男 40 40
女 80 40
(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?
(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下:
支付方式 现金支付 购物卡支付 APP支付
频率 10% 30% 60%
优惠方式 按9折支付 按8折支付 其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付
将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望.
附表及公式:.
0.15 0.10 0.05 0.025 0.010 0.005 0.001
2.072 2.706 3.841 5.024 6.635 7.879 10.828
21.(12分)记为数列的前项和,已知,等比数列满足,.
(1)求的通项公式;
(2)求的前项和.
22.(10分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.
(1)证明:平面;
(2)若,求直线与平面所成角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.
【详解】
函数,
由辅助角公式化简可得,
因为为函数图象的一条对称轴,
代入可得,
即,化简可解得,
即,
所以
将函数的图象向右平行移动个单位长度可得,
则,
故选:C.
【点睛】
本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.
2、A
【解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.
【详解】
解:设点,则点,,
,
,
当时,取最小值,最小值为.
故选:A.
【点睛】
本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.
3、C
【解析】
首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.
【详解】
因为正方形为朱方,其面积为9,
五边形的面积为,
所以此点取自朱方的概率为.
故选:C
【点睛】
本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.
4、A
【解析】
由题意知成等差数列,结合等差中项,列出方程,即可求出的值.
【详解】
解:由为等差数列,可知也成等差数列,
所以 ,即,解得.
故选:A.
【点睛】
本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.
5、C
【解析】
根据复数模的性质计算即可.
【详解】
因为,
所以,
,
故选:C
【点睛】
本题主要考查了复数模的定义及复数模的性质,属于容易题.
6、C
【解析】
根据并集的求法直接求出结果.
【详解】
∵ ,
∴ ,
故选C.
【点睛】
考查并集的求法,属于基础题.
7、D
【解析】
试题分析:由于在等比数列中,由可得:,
又因为,
所以有:是方程的二实根,又,,所以,
故解得:,从而公比;
那么,
故选D.
考点:等比数列.
8、A
【解析】
根据题意可得,即知C在以AB为直径的圆上.
【详解】
,,
,
又,,
平面,又平面
,
故在以为直径的圆上,
又是内异于的动点,
所以的轨迹是圆,但要去掉两个点A,B
故选:A
【点睛】
本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.
9、A
【解析】
由函数性质,结合特殊值验证,通过排除法求得结果.
【详解】
对于选项B, 为 奇函数可判断B错误;
对于选项C,当时, ,可判断C错误;
对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;
故选:A.
【点睛】
本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.
10、D
【解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案
【详解】
连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.
【点睛】
本题考查向量的线性运算问题,属于基础题
11、B
【解析】
求出,把坐标代入方程可求得.
【详解】
据题意,得,所以,所以.
故选:B.
【点睛】
本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.
12、D
【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.
【详解】
如图所示:
因为,所以,
又因为,所以,所以,
所以,所以,
所以,所以,
所以渐近线方程为.
故选:D.
【点睛】
本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.
【详解】
三个小朋友之间准备送礼物,
约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),
基本事件总数,
三人都收到礼物包含的基本事件个数.
则三人都收到礼物的概率.
故答案为:.
【点睛】
本题考查古典概型概率的求法,考查运算求解能力,属于基础题.
14、1
【解析】
根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.
【详解】
,则,
平面向量,的夹角为,则由平面向量数量积定义可得,
根据平面向量模的求法可知,
代入可得,
解得,
故答案为:1.
【点睛】
本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.
15、
【解析】
根据题意,分离参数,转化为只对于内的任意恒成立,令,则只需在定义域内即可,利用放缩法,得出,化简后得出,即可得出的取值范围.
【详解】
解:已知对于定义域内的任意恒成立,
即对于内的任意恒成立,
令,则只需在定义域内即可,
,
,当时取等号,
由可知,,当时取等号,
,
当有解时,
令,则,
在上单调递增,
又,,
使得,
,
则,
所以的取值范围为.
故答案为:.
【点睛】
本题考查利用导数研究函数单调性和最值,解决恒成立问题求参数值,涉及分离参数法和放缩法,考查转化能力和计算能力.
16、2025
【解析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.
【详解】
依题意,令,解得,所以,则二项式的展开式的通项为:
令,得,所以的系数为.
故答案为:2025
【点睛】
本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)
【解析】
(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.
(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.
【详解】
(1)由题意,当时,由,可得,
令,则只需,
当时,;
当时,;
当时,;
故当时,取得最小值,即的最大值为.
(2)依题意,当时,不等式恒成立,
即在上恒成立,
所以,即,即,
解得在上恒成立,
则,所以,
所示实数的取值范围是.
【点睛】
本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.
18、(Ⅰ)点在直线上;见解析(Ⅱ)
【解析】
(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;
(Ⅱ)根据直线的参数方程中参数的几何意义可得.
【详解】
(Ⅰ)直线:,即,
所以直线的直角坐标方程为,
因为,
所以点在直线上;
(Ⅱ)直线的参数方程为(为参数),
曲线的普通方程为,
将直线的参数方程代入曲线的普通方程得,
设两根为,,所以,,
故与异号,
所以,
,
所以.
【点睛】
本题考查在极坐标参数方程中方程互化,还考查了直线的参数方程中参数的几何意义,属于中档题.
19、(1):,:;(2),此时.
【解析】
试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
试题解析: (1)的普通方程为,的直角坐标方程为.
(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
考点:坐标系与参数方程.
【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.
20、(1)有97.5%的把握认为顾客购物体验的满意度与性别有关; (2)67元,见解析.
【解析】
(1)根据表格数据代入公式,结合临界值即得解;
(2)的可能取值为40,60,80,1,根据题意依次计算概率,列出分布列,求数学期望即可.
【详解】
(1)由题得
,
所以,有97.5%的把握认为顾客购物体验的满意度与性别有关.
(2)由题意可知的可能取值为40,60,80,1.
,,
,.
则的分布列为
40 60 80 1
所以,(元).
【点睛】
本题考查了统计和概率综合,考查了列联表,随机变量的分布列和数学期望等知识点,考查了学生数据处理,综合分析,数学运算的能力,属于中档题.
21、(1)(2)当时,;当时,.
【解析】
(1)利用数列与的关系,求得;
(2)由(1)可得:,,算出公比,利用等比数列的前项和公式求出.
【详解】
(1)当时,,
当时,
,
因为适合上式,
所以.
(2)由(1)得,,
设等比数列的公比为,则,解得,
当时,,
当时,.
【点睛】
本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考
查运算求解能力.
.
22、 (1)证明见解析;(2)
【解析】
(1)连接交于点,连接,通过证,并说明平面,来证明平面
(2)采用建系法以、、所在直线分别为、、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可
【详解】
证明:如图,
连接交于点,连接,点为的中点,点为的中点,
点为的重心,则,,,
又平面,平面,平面;
,,,,
,,可得,又,
则以、、所在直线分别为、、轴建立空间直角坐标系,
则,,,,
,,.
设平面的一个法向量为,由,
取,得.设直线与平面所成角为,
则.直线与平面所成角的正弦值为.
【点睛】
本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式使用广泛,需要识记