广东深圳华师附中2023年高考数学倒计时模拟卷(含解析)
2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在的展开式中,含的项的系数是( )
A.74 B.121 C. D.
2.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( )
A. B. C. D.
3.已知集合,,,则的子集共有( )
A.个 B.个 C.个 D.个
4.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )
A. B. C. D.
5.执行程序框图,则输出的数值为( )
A. B. C. D.
6.记的最大值和最小值分别为和.若平面向量、、,满足,则( )
A. B.
C. D.
7.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )
A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为
C. D.三棱锥P-ABC的侧面积为
8.已知集合,则( )
A. B.
C. D.
9.已知复数z满足(i为虚数单位),则z的虚部为( )
A. B. C.1 D.
10.要得到函数的导函数的图像,只需将的图像( )
A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍
B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍
C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍
D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍
11.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为( )
A. B. C. D.
12.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.
14.已知向量与的夹角为,||=||=1,且⊥(λ),则实数_____.
15.已知函数()在区间上的值小于0恒成立,则的取值范围是________.
16.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设,,,.
(1)若的最小值为4,求的值;
(2)若,证明:或.
18.(12分)已知函数()的图象在处的切线为(为自然对数的底数)
(1)求的值;
(2)若,且对任意恒成立,求的最大值.
19.(12分)在数列中,已知,且,.
(1)求数列的通项公式;
(2)设,数列的前项和为,证明:.
20.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.
(1)求的值;
(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.
21.(12分)在①;②;③ 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.
在中,内角A,B,C的对边分别为a,b,c,且满足________________,,求的面积.
22.(10分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体
(1)求证:
(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;
(3)若平面底面,求六面体的体积的最大值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
根据,利用通项公式得到含的项为:,进而得到其系数,
【详解】
因为在,
所以含的项为:,
所以含的项的系数是的系数是,
,
故选:D
【点睛】
本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,
2、C
【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.
【详解】
由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.
故选C.
【点睛】
本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.
3、B
【解析】
根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.
【详解】
由题可知:,
当时,
当时,
当时,
当时,
所以集合
则
所以的子集共有
故选:B
【点睛】
本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.
4、D
【解析】
先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.
【详解】
,
将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为
,
再向右平移个单位长度,所得函数的解析式为
,
,
可得函数图象的一个对称中心为,故选D.
【点睛】
三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.
5、C
【解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.
【详解】
,,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,不满足条件,
输出.
故选:C
【点睛】
本题主要考查程序框图中的循环结构,属于简单题.
6、A
【解析】
设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,,,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.
【详解】
由已知可得,则,,,
建立平面直角坐标系,设,,,
由,可得,
即,
化简得点的轨迹方程为,则,
则转化为圆上的点与点的距离,,,
,
转化为圆上的点与点的距离,
,.
故选:A.
【点睛】
本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.
7、C
【解析】
根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.
【详解】
解:根据三视图,可得三棱锥P-ABC的直观图如图所示,
其中D为AB的中点,底面ABC.
所以三棱锥P-ABC的体积为,
,,,
,、不可能垂直,
即不可能两两垂直,
,.
三棱锥P-ABC的侧面积为.
故正确的为C.
故选:C.
【点睛】
本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.
8、B
【解析】
先由得或,再计算即可.
【详解】
由得或,
,,
又,.
故选:B
【点睛】
本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.
9、D
【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.
【详解】
因为复数z满足,
所以,
所以z的虚部为.
故选:D.
【点睛】
本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.
10、D
【解析】
先求得,再根据三角函数图像变换的知识,选出正确选项.
【详解】
依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.
故选:D
【点睛】
本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.
11、D
【解析】
由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,
可知为的三等分点,且,
点在直线上,并且,则,,
设,则,
解得,即,
代入双曲线的方程可得,解得,故选D.
点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).
12、A
【解析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.
【详解】
不妨设双曲线的一条渐近线与圆交于,
因为,所以圆心到的距离为:,
即,因为,所以解得.
故选A.
【点睛】
本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.
【详解】
解:双曲线的右准线,渐近线,
双曲线的右准线与渐近线的交点,
交点在抛物线上,
可得:,
解得.
故答案为.
【点睛】
本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.
14、1
【解析】
根据条件即可得出,由即可得出,进行数量积的运算即可求出λ.
【详解】
∵向量与的夹角为,||=||=1,且;
∴;
∴λ=1.
故答案为:1.
【点睛】
考查向量数量积的运算及计算公式,以及向量垂直的充要条件.
15、
【解析】
首先根据的取值范围,求得的取值范围,由此求得函数的值域,结合区间上的值小于0恒成立列不等式组,解不等式组求得的取值范围.
【详解】
由于,所以,
由于区间上的值小于0恒成立,
所以().
所以,
由于,所以,
由于,所以令得.
所以的取值范围是.
故答案为:
【点睛】
本小题主要考查三角函数值域的求法,考查三角函数值恒小于零的问题的求解,考查化归与转化的数学思想方法,属于中档题.
16、
【解析】
根据题意求出点N的坐标,将其代入椭圆的方程,求出参数m的值,再根据离心率的定义求值.
【详解】
由题意得,
将其代入椭圆方程得,
所以.
故答案为:.
【点睛】
本题考查了椭圆的标准方程及几何性质,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)2;(2)见解析
【解析】
(1)将化简为,再利用基本不等式即可求出最小值为4,便可得出的值;
(2)根据,即,得出,利用基本不等式求出最值,便可得出的取值范围.
【详解】
解:(1)由题可知,,,,
,
∴.
(2)∵,
∴,
∴,
∴,即:或.
【点睛】
本题考查基本不等式的应用,利用基本不等式和放缩法求最值,考查化简计算能力.
18、 (1)a=-1,b=1;(2)-1.
【解析】
(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,,,,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.
(1),.
由题意知.
(2)由(1)知:,
∴对任意恒成立
对任意恒成立
对任意恒成立.
令,则.
由于,所以在上单调递增.
又,,,,
所以存在唯一的,使得,且当时,,时,. 即在单调递减,在上单调递增.
所以.
又,即,∴.
∴ .
∵ ,∴ .
又因为对任意恒成立,
又,∴ .
点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.
19、(1);(2)见解析.
【解析】
(1)由已知变形得到,从而是等差数列,然后利用等差数列的通项公式计算即可;
(2)先求出数列的通项,再利用裂项相消法求出即可.
【详解】
(1)由已知,,即,又,则数列是以1为首项3
为公差的等差数列,所以,即.
(2)因为,则,
所以,又
是递增数列,所以,综上,.
【点睛】
本题考查由递推公式求数列通项公式、裂项相消法求数列的和,考查学生的计算能力,是一道基础题.
20、(1);(2)点在定直线上.
【解析】
(1)设出直线的方程为,由直线和圆相切的条件:,解得;
(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;
【详解】
解:(1)依题意设直线的方程为,
由已知得:圆的圆心,半径,
因为直线与圆相切,
所以圆心到直线的距离,
即,解得或(舍去).
所以;
(2)依题意设,由(1)知抛物线方程为,
所以,所以,设,则以为切点的切线的斜率为,
所以切线的方程为.
令,,即交轴于点坐标为,
所以, ,
,
.
设点坐标为,则,
所以点在定直线上.
【点睛】
本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题.
21、横线处任填一个都可以,面积为.
【解析】
无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积.
【详解】
在横线上填写“”.
解:由正弦定理,得.
由,
得.
由,得.
所以.
又(若,则这与矛盾),
所以.
又,得.
由余弦定理及,
得,
即.将代入,解得.
所以.
在横线上填写“”.
解:由及正弦定理,得
.
又,
所以有.
因为,所以.
从而有.又,
所以
由余弦定理及,
得
即.将代入,
解得.
所以.
在横线上填写“”
解:由正弦定理,得.
由,得,
所以
由二倍角公式,得.
由,得,所以.
所以,即.
由余弦定理及,
得.
即.将代入,
解得.
所以.
【点睛】
本题考查三角形面积公式,考查正弦定理、余弦定理,两角和的正弦公式等,正弦定理进行边角转换,求三角形面积时,
①若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;
②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.
22、(1)证明见解析(2)(3)
【解析】
根据折叠图形, ,由线面垂直的判定定理可得平面,再根据平面,得到.
(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.
设所求几何体的体积为,设为高,则,表示梯形BEFD和 ABD的面积由,再利用导数求最值.
【详解】
(1)证明:不妨设与的交点为与的交点为
由题知,,则有
又,则有
由折叠可知所以可证
由平面平面,
则有平面
又因为平面,
所以....
(2)解:依题意,有平面平面,
又平面,
则有平面,,又由题意知,
如图所示:
以为坐标原点,为轴建立如图所示的空间直角坐标系
由题意知
由可知,
则
则有,
,
设平面与平面的法向量分别为
则有
则
所以
因为,解得
设所求几何体的体积为,设,
则,
当时,,当时,
在是增函数,在上是减函数
当时,有最大值,
即
六面体的体积的最大值是
【点睛】
本题主要考查线线垂直,线面垂直,面面垂直的转化,二面角的向量求法和空间几何体的体积,还考查了转化化归的思想和运算求解的能力,属于难题.