2023届江西省上饶市民校考试联盟高考适应性考试数学试卷(含解析)
2023年高考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )
A.1 B.2 C.-1 D.-2
2.已知复数是纯虚数,其中是实数,则等于( )
A. B. C. D.
3.复数 (i为虚数单位)的共轭复数是
A.1+i B.1 i C. 1+i D. 1 i
4.命题:的否定为
A. B.
C. D.
5.将函数的图像向左平移个单位得到函数的图像,则的最小值为( )
A. B. C. D.
6.已知函数,若时,恒成立,则实数的值为( )
A. B. C. D.
7.已知定义在上的函数满足,且当时,,则方程的最小实根的值为( )
A. B. C. D.
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )
A. B. C. D.以上都不对
9.已知曲线且过定点,若且,则的最小值为( ).
A. B.9 C.5 D.
10.已知平面,,直线满足,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
11.已知,则,不可能满足的关系是()
A. B. C. D.
12.已知复数,为的共轭复数,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,,,的夹角为30°,,则_________.
14.若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为________.
15.已知函数有两个极值点、,则的取值范围为_________.
16.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,,求证:
(1);
(2).
18.(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.
(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
19.(12分)已知满足 ,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)
20.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.
(1)求证:.
(2)若,求二面角的余弦值.
21.(12分)已知函数
(1)解不等式;
(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.
22.(10分)已知函数,.
(1)若,,求实数的值.
(2)若,,求正实数的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.
【详解】
因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.
【点睛】
本题主要考查圆的性质应用,几何性质的转化是求解的捷径.
2、A
【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.
【详解】
因为为纯虚数,所以,得
所以.
故选A项
【点睛】
本题考查复数的四则运算,纯虚数的概念,属于简单题.
3、B
【解析】
分析:化简已知复数z,由共轭复数的定义可得.
详解:化简可得z=
∴z的共轭复数为1﹣i.
故选B.
点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.
4、C
【解析】
命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.
5、B
【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.
【详解】
将函数的图象向左平移个单位,
得到,
此时与函数的图象重合,
则,即,,
当时,取得最小值为,
故选:.
【点睛】
本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.
6、D
【解析】
通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.
【详解】
如图所示,函数与的图象,
因为时,恒成立,
于是两函数必须有相同的零点,
所以
,
解得.
故选:D
【点睛】
本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.
7、C
【解析】
先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.
【详解】
当时,,所以,故当
时,,所以,而
,所以,又当时,
的极大值为1,所以当时,的极大值为,设方程
的最小实根为,,则,即,此时
令,得,所以最小实根为411.
故选:C.
【点睛】
本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.
8、A
【解析】
首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.
【详解】
不超过的素数有,,,,,,,,共个,
从这个素数中任选个,有种可能;
其中选取的两个数,其和等于的有,,共种情况,
故随机选出两个不同的数,其和等于的概率.
故选:.
【点睛】
本题考查古典概型概率问题的求解,属于基础题.
9、A
【解析】
根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.
【详解】
定点为,
,
当且仅当时等号成立,
即时取得最小值.
故选:A
【点睛】
本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.
10、A
【解析】
,是相交平面,直线平面,则“” “”,反之,直线满足,则或//或平面,即可判断出结论.
【详解】
解:已知直线平面,则“” “”,
反之,直线满足,则或//或平面,
“”是“”的充分不必要条件.
故选:A.
【点睛】
本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.
11、C
【解析】
根据即可得出,,根据,,即可判断出结果.
【详解】
∵;
∴,;
∴,,故正确;
,故C错误;
∵
,故D正确
故C.
【点睛】
本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题
12、C
【解析】
求出,直接由复数的代数形式的乘除运算化简复数.
【详解】
.
故选:C
【点睛】
本题考查复数的代数形式的四则运算,共轭复数,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【解析】
由求出,代入,进行数量积的运算即得.
【详解】
,存在实数,使得.
不共线,.
,,,的夹角为30°,
.
故答案为:1.
【点睛】
本题考查向量共线定理和平面向量数量积的运算,属于基础题.
14、
【解析】
注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.
【详解】
由已知,,
,又,故,
,所以的最小值为.
故答案为:.
【点睛】
本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.
15、
【解析】
确定函数的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求的取值范围.
【详解】
函数的定义域为,,
依题意,方程有两个不等的正根、(其中),
则,由韦达定理得,,
所以,
令,则,,
当时,,则函数在上单调递减,则,
所以,函数在上单调递减,所以,.
因此,的取值范围是.
故答案为:.
【点睛】
本题考查了函数极值点问题,考查了函数的单调性、最值,将的取值范围转化为以为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.
16、
【解析】
试题分析:从编号分别为1,1,3,4,5的5个红球和5个黑球,从中随机取出4个,有种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件为“取出球的编号互不相同”,
则事件包含了个基本事件,所以.
考点:1.计数原理;1.古典概型.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)见解析.
【解析】
(1)结合基本不等式可证明;
(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.
【详解】
(1)∵,
∴
,当且仅当a=b=c等号成立,
∴;
(2)由基本不等式,
∴,同理,,
∴,当且仅当a=b=c等号成立
∴.
【点睛】
本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.
18、 (1) (2) ①生产线上挽回的损失较多. ②见解析
【解析】
(1)由题意得到关于的不等式,求解不等式得到的取值范围即可确定其最小值;
(2)①.由题意利用二项分布的期望公式和数学期望的性质给出结论即可;
②.由题意首先确定X可能的取值,然后求得相应的概率值可得分布列,最后由分布列可得利润的期望值.
【详解】
(1)设从,生产线上各抽检一件产品,至少有一件合格为事件,设从,生产线上抽到合格品分别为事件,,则,互为独立事件
由已知有,
则
解得,则的最小值
(2)由(1)知,生产线的合格率分别为和,即不合格率分别为和.
①设从,生产线上各抽检件产品,抽到不合格产品件数分别为,,
则有,,所以,生产线上挽回损失的平均数分别为:
,
所以生产线上挽回的损失较多.
②由已知得的可能取值为,,,用样本估计总体,则有
,,
所以的分布列为
所以(元)
故估算估算该厂产量件时利润的期望值为(元)
【点睛】
本题主要考查概率公式的应用,二项分布的性质与方差的求解,离散型随机变量及其分布列的求解等知识,意在考查学生的转化能力和计算求解能力.
19、见解析
【解析】
选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.
【详解】
选择①时:,,故.
根据正弦定理:,故,故.
选择②时,,,故,为钝角,故无解.
选择③时,,根据正弦定理:,故,
解得,.
根据正弦定理:,故,故.
【点睛】
本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力.
20、(1)见解析(2)
【解析】
(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;
(2)以为轴建立空间直角坐标系,用空间向量法示二面角.
【详解】
(1)证明:连接,,.
,,平面.
平面,平面平面.
,为的中点,.
平面平面,平面.
平面,.
为斜边的中点,,
(2),由(1)可知,为等腰直角三角形,
则.以为坐标原点建立如图所示的空间直角坐标系,
则,,,,
则,记平面的法向量为
由得到,
取,可得,则.
易知平面的法向量为.
记二面角的平面角为,且由图可知为锐角,
则,所以二面角的余弦值为.
【点睛】
本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角.在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解.
21、(1)(2)
【解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.
(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.
【详解】
(1),
由得或或;
解得.故所求解集为.
(2)
,
即.
由(1)知,
所以,即.
∴,∴.
【点睛】
本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.
22、(1)1(2)
【解析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.
(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.
解法二:可利用导数,先证明不等式,,,,
令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.
【详解】
(1)由题意,得,,
由,…①,得,
令,则,
因为,所以在单调递增,
又,所以当时,,单调递增;
当时,,单调递减;
所以,当且仅当时等号成立.
故方程①有且仅有唯一解,实数的值为1.
(2)解法一:令(),
则,
所以当时,,单调递增;
当时,,单调递减;
故
.
令(),
则.
(i)若时,,在单调递增,
所以,满足题意.
(ii)若时,,满足题意.
(iii)若时,,在单调递减,
所以.不满足题意.
综上述:.
解法二:先证明不等式,,,…(*).
令,
则当时,,单调递增,
当时,,单调递减,
所以,即.
变形得,,所以时,,
所以当时,.
又由上式得,当时,,,.
因此不等式(*)均成立.
令(),
则,
(i)若时,当时,,单调递增;
当时,,单调递减;
故
.
(ii)若时,,在单调递增,
所以 .
因此,①当时,此时,,,
则需
由(*)知,,(当且仅当时等号成立),所以.
②当时,此时,,
则当时,
(由(*)知);
当时,(由(*)知).故对于任意,.
综上述:.
【点睛】
本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.