欢迎您光临本站https://www.booksld.com,如有问题请及时联系我们。

2023届江西省南昌市东湖区第十中学高三最后一卷数学试卷(含解析)

2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.正项等差数列的前和为,已知,则=( )
A.35 B.36 C.45 D.54
2.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为( )
A.20 B.30 C.50 D.60
3.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为( )
A.2 B.3 C.5 D.8
4.设点,,不共线,则“”是“”( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
5.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )
A. B. C. D.
6.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )
A.,b为任意非零实数 B.,a为任意非零实数
C.a、b均为任意实数 D.不存在满足条件的实数a,b
7.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )
A. B.6 C. D.
8.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )
A. B.3 C. D.
9.若实数x,y满足条件,目标函数,则z 的最大值为( )
A. B.1 C.2 D.0
10.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=( )
A.1 B. C.2 D.4
11.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )
A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著
B.从2014年到2018年这5年,高铁运营里程与年价正相关
C.2018年高铁运营里程比2014年高铁运营里程增长80%以上
D.从2014年到2018年这5年,高铁运营里程数依次成等差数列
12.已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设数列的前n项和为,且,若,则______________.
14.在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院.
15.关于函数有下列四个命题:
①函数在上是增函数;
②函数的图象关于中心对称;
③不存在斜率小于且与函数的图象相切的直线;
④函数的导函数不存在极小值.
其中正确的命题有______.(写出所有正确命题的序号)
16.若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数(,)满足下列3个条件中的2个条件:
①函数的周期为;
②是函数的对称轴;
③且在区间上单调.
(Ⅰ)请指出这二个条件,并求出函数的解析式;
(Ⅱ)若,求函数的值域.
18.(12分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
19.(12分)设函数,其中.
(Ⅰ)当为偶函数时,求函数的极值;
(Ⅱ)若函数在区间上有两个零点,求的取值范围.
20.(12分)在中,角所对的边分别为,若,,,且.
(1)求角的值;
(2)求的最大值.
21.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.
22.(10分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.
(1)求cosC的值;
(2)若a=3,c,求△ABC的面积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.
【详解】
正项等差数列的前项和,


解得或(舍),
,故选C.
【点睛】
本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.
2、D
【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.
【详解】
由题意,设A点的坐标为,根据对称性可得,
则的面积为,
当最大时,的面积最大,
由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,
又由,可得椭圆的上下顶点坐标为,
所以的面积的最大值为.
故选:D.
【点睛】
本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.
3、D
【解析】
画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.
【详解】
解:函数,如图所示
当时,,
由于关于的不等式恰有1个整数解
因此其整数解为3,又
∴,,则
当时,,则不满足题意;
当时,
当时,,没有整数解
当时,,至少有两个整数解
综上,实数的最大值为
故选:D
【点睛】
本题主要考查了根据函数零点的个数求参数范围,属于较难题.
4、C
【解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.
【详解】
由于点,,不共线,则“”;
故“”是“”的充分必要条件.
故选:C.
【点睛】
本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.
5、D
【解析】
画出曲线与围成的封闭区域,表示封闭区域内的点和定点连线的斜率,然后结合图形求解可得所求范围.
【详解】
画出曲线与围成的封闭区域,如图阴影部分所示.
表示封闭区域内的点和定点连线的斜率,
设,结合图形可得或,
由题意得点A,B的坐标分别为,
∴,
∴或,
∴的取值范围为.
故选D.
【点睛】
解答本题的关键有两个:一是根据数形结合的方法求解问题,即把看作两点间连线的斜率;二是要正确画出两曲线所围成的封闭区域.考查转化能力和属性结合的能力,属于基础题.
6、A
【解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.
【详解】
依题意,在点处的切线与直线AB平行,即有
,所以,由于对任意上式都成立,可得,为非零实数.
故选:A
【点睛】
本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.
7、D
【解析】
用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.
【详解】
执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.
故选D.
【点睛】
本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.
8、D
【解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.
【详解】
由题意,设点.

即,
整理得,
则,解得或.
.
故选:.
【点睛】
本题考查直线与方程,考查平面内两点间距离公式,属于中档题.
9、C
【解析】
画出可行域和目标函数,根据平移得到最大值.
【详解】
若实数x,y满足条件,目标函数
如图:
当时函数取最大值为
故答案选C
【点睛】
求线性目标函数的最值:
当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;
当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.
10、C
【解析】
设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.
【详解】
由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,
设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),
∴y1+y2=p,
又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,
故选C.
【点睛】
本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.
11、D
【解析】
由折线图逐项分析即可求解
【详解】
选项,显然正确;
对于,,选项正确;
1.6,1.9,2.2,2.5,2.9不是等差数列,故错.
故选:D
【点睛】
本题考查统计的知识,考查数据处理能力和应用意识,是基础题
12、B
【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.
【详解】
由题,

由累加法可得:

对于任意的,不等式恒成立


可得且

可得或
故选B
【点睛】
本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.
二、填空题:本题共4小题,每小题5分,共20分。
13、9
【解析】
用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.
【详解】
由,得,两式相减,得,
即;又,解得,所以数列为首项为-3、
公比为3的等比数列,所以.
故答案为:9.
【点睛】
本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.
14、16 1
【解析】
由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果.
【详解】
某医院一次性收治患者127人.
第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.
且从第16天开始,每天出院的人数是前一天出院人数的2倍,
从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,
则第19天治愈出院患者的人数为,

解得,
第天该医院本次收治的所有患者能全部治愈出院.
故答案为:16,1.
【点睛】
本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.
15、①②③
【解析】
由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.
【详解】
函数的定义域是,
由于,
在上递增,∴函数在上是递增,①正确;
,∴函数的图象关于中心对称,②正确;
,时取等号,∴③正确;
,设,则,显然是即的极小值点,④错误.
故答案为:①②③.
【点睛】
本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.
16、
【解析】
注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.
【详解】
由已知,,
,又,故,
,所以的最小值为.
故答案为:.
【点睛】
本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)只有①②成立,;(Ⅱ).
【解析】
(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.
(Ⅱ)得到,得到函数值域.
【详解】
(Ⅰ)由①可得,;由②得:,;
由③得,,,;
若①②成立,则,,,
若①③成立,则,,不合题意,
若②③成立,则,,
与③中的矛盾,所以②③不成立,
所以只有①②成立,.
(Ⅱ)由题意得,,
所以函数的值域为.
【点睛】
本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.
18、(1).(2).
【解析】
(1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,则(﹣1,0,2),(﹣2,﹣1,1),计算夹角得到答案.
(2)设,0≤λ≤1,计算P(0,2λ,2﹣2λ),计算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根据夹角公式计算得到答案.
【详解】
(1)∵BAF=90°,∴AF⊥AB,
又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,
∴AF⊥平面ABCD,又四边形ABCD为矩形,
∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,
∵AD=2,AB=AF=2EF=2,P是DF的中点,
∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),
(﹣1,0,2),(﹣2,﹣1,1),
设异面直线BE与CP所成角的平面角为θ,
则cosθ,
∴异面直线BE与CP所成角的余弦值为.
(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),
设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),
解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),
(0,2λ,2﹣2λ),(2,2,0),
设平面APC的法向量(x,y,z),
则,取x=1,得(1,﹣1,),
平面ADP的法向量(1,0,0),
∵二面角D﹣AP﹣C的正弦值为,
∴|cos|,
解得,∴P(0,,),
∴PF的长度|PF|.
【点睛】
本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.
19、(Ⅰ)极小值,极大值;(Ⅱ)或
【解析】
(Ⅰ)根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,(Ⅱ)先分离变量,转化研究函数,,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围.
【详解】
(Ⅰ)由函数是偶函数,得,
即对于任意实数都成立,
所以.
此时,则.
由,解得.
当x变化时,与的变化情况如下表所示:
0 0
↘ 极小值 ↗ 极大值 ↘
所以在,上单调递减,在上单调递增.
所以有极小值,有极大值.
(Ⅱ)由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.
对函数求导,得.
由,解得,.
当x变化时,与的变化情况如下表所示:
0 0
↘ 极小值 ↗ 极大值 ↘
所以在,上单调递减,在上单调递增.
又因为,,,,
所以当或时,直线与曲线,有且只有两个公共点.
即当或时,函数在区间上有两个零点.
【点睛】
利用函数零点的情况求参数值或取值范围的方法
(1)利用零点存在的判定定理构建不等式求解.
(2)分离参数后转化为函数的值域(最值)问题求解.
(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.
20、(1);(2).
【解析】
(1)由正弦定理可得,再用余弦定理即可得到角C;
(2),再利用求正弦型函数值域的方法即可得到答案.
【详解】
(1)因为,所以.
在中,由正弦定理得,
所以,即.
在中,由余弦定理得,
又因为,所以.
(2)由(1)得,在中,,
所以
.
因为,所以,
所以当,即时,有最大值1,
所以的最大值为.
【点睛】
本题考查正余弦定理解三角形,涉及到两角差的正弦公式、辅助角公式、向量数量积的坐标运算,是一道容易题.
21、证明见解析
【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可证明.
【详解】
因为凸边形的面积为1,所以,
所以
(由柯西不等式得)
(由均值不等式得)
【点睛】
本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.
22、(1);(2)或.
【解析】
(1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值;
(2)根据余弦定理求出b=1或b=3,结合面积公式求解.
【详解】
(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化简得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,
∴cosC;
(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,
∵cosC,C为三角形内角,
∴sinC,
∴S△ABCabsinC3×bb,
则△ABC的面积为或.
【点睛】
此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余弦定理求解边长,根据面积公式求解面积.

来源:本文由免费找卷子答案网站-答案联动网网络整理发布,如有侵权,请联系我们删除!,欢迎分享本文,转载请保留出处和链接!