THUSSAT中学生标准学术能力诊断性测试2023-2024高三上学期9月测试数学试卷(含答案)
中学生标准学术能力诊断性测试 2023 年 9 月测试 的最大值为
数学试卷 A.1 B.2 C.3 D.4
11 10 1
本试卷共 150 分,考试时间 分钟。 8.比较a = ,b = ln1.2,c = 的大小 120 10 11 5e0.1
一、单项选择题:本题共 8小题,每小题 5分,共 40分.在每小题给出的四个选项中,只有一项是 A.a c b B.b c a C.b a c D.a b c
符合题目要求的. 二、多项选择题:本题共 4小题,每小题 5分,共 20分.在每小题给出的四个选项中,有多项符合
x 1 1 题目要求.全部选对得 5分,部分选对但不全得 3分,有错选的得 0分. 1.设集合 A = x , x R , B = x N 1 x 5 ,则 A B =
x+ 2 2 9.已知实数a b c满足a b c,且abc =1,则下列说法正确的是
A. 2 B. 2,3 C. 3,4 D. 2,3,4
2 1 1 1
A. (a + c) B.
2.欧拉公式ei = cos + isin 把自然对数的底数 e 、虚数单位 i 、三角函数联系在一起,充分体现 b a c b c
2 2 2 2
了数学的和谐美.已知实数指数幂的运算性质同样也适用于复数指数幂,则 i C.a b D. (a b 1 ab 1 0 i = )( )
2
A. B. C.e D.e 10.已知 10 个样本数据,若去掉其中最大和最小的数据,设剩下的 8 个样本数据的方差为 s1 ,平均e 2 e 2
2 2
3.已知等比数列 an 的前 n 项和为 S ,若 S = S +16S ,则公比 q= 数 x ;最大和最小两个数据的方差为 s ,平均数1 2 x ;原样本数据的方差为S ,平均数 x ,若n 12 4 8 2
A.3 B. 2 C.2 D. 3 x1 = x ,则 2
4.已知向量 AB AC = 6,线段 BC 的中点为M ,且 AM = 6 ,则 BC = A.剩下的 8 个样本数据与原样本数据的中位数不变
A.2 30 B.3 30 C.2 26 D.3 26 B. x = x 1
C.剩下 8 个数据的下四分位数大于与原样本数据的下四分位数
5.已知函数 f (x) = sin x + ( 0) 的周期为 T ,且满足 T 2 ,若函数 f (x) 在区间
3
2 4 1
D. S = s
2 + s2
1 2
, 5 5 不单调,则 的取值范围是
6 4 11.已知函数 f (x) = cos2x+2 sin x ,则
1 2 4
A. ,1 B. ,1 C. ,1 D. ,1
4 2 3 5 A.函数 f (x)在区间 , 上单调递增
6 2
6.三棱锥 A BCD中,AB = 3, BC = BD = 4 2, ABC = ABD = , DBC = ,则直线 AD
4 3 B.直线 x = 是函数 f (x)图象的一条对称轴
2
与平面 ABC 所成角的正弦值是 3
C.函数 f (x)的值域为 1,
2
4 17 4 29 3 17 3 29
A. B. C. D. D.方程 f (x) = a(x (0,2 ))最多有 8 个根,且这些根之和为
17 29 17 29
2
BD 1 x 2 A, B
7.已知三角形 ABC 中,BC = 3,角 A的平分线交 BC 于点 ,若 = ,则三角形 ABC 面积
12.已知椭圆
D C : + y =1
的中心为 O , 是 C 上的两个不同的点且满足 OA⊥OB ,则
DC 2 2
A.点O在直线 AB 上投影的轨迹为圆
第 1 页 共 4 页 第 2 页 共 4 页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}
6 乙类问题的概率为 0.5;C 员工能正确回答甲类问题的概率为 0.4,能正确回答乙类问题的概率
B. AOB的平分线交 AB 于 D点,OD的最小值为
3 为 0.75.
2
C. AOB 面积的最小值为
3 (1)求 3 人得分之和为 20 分的概率;
2 3
. AOB 中, 边上中线长的最小值为 (2)设随机变量 X为 3 人中得分为 100 的人数,求随机变量 X的数学期望. D AB
3 20.(12 分)已知四棱锥S ABCD中,底面 ABCD是矩形,
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
2
13.已知 tan = 2 ,则sin 4 = . SA⊥ BD,SA = AD = CD,M 是 SB 的中点.
2
5
14.若 (x2 x 3) = a + a x+ a x2 + + a x10 ,则a1 + a2 + a3 + a4 + a5 = . 0 1 2 10 (1)证明:MC ⊥ BD ;
15.已知四棱锥的各个顶点都在同一个球面上.若该球的体积为36 ,则该四棱锥体积的最大值
是 (2)若 . SA⊥ AD,SA= 2,点P是 SC 上的动点,直线 AP 与平
1 10 SP
( ) x 2 (第 20 题图) 16.已知函数 f x = e +msin x x (m+1) x+1,在 x = 0处取到极小值,则实数m = . 面 AMC 所成角的正弦值为 ,求 .
2 10 SC
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. x2 y2
21.(12 分)已知椭圆C : + =1(b 0)的左右焦点分别为F1, F2 ,C是椭圆的中心,点 M为 2
17.(10 分)已知 an 是各项均为正数的等比数列,设 cn = log3 an ,若数列 cn 的前 n 项和 6 b
其上的一点满足 MF1 MF2 = 5, MC = 2.
n2 + n
S = . n
2 (1)求椭圆 C的方程;
(1)求数列 an 的通项公式; (2)设定点T (t,0),过点T 的直线 l 交椭圆 C于P,Q两点,若在 C上存在一点 A,使得直线 AP
(2)记dn = an (2n2 + 6n+5),求数列 dn 的前n 项和Tn . 的斜率与直线 AQ的斜率之和为定值,求 t 的范围.
ax ln x
18.(12 分)记 ABC 的内角 A, B,C 的对边分别为 a,b,c ,已知 c = 2acos Acos B bcos2A 22.(12 分)已知函数 f (x) = e e ea (x 0).
x
(A B). f x
(1)当a =1时,求函数 g ( x) = eax 1
( )
+ x a 的单调区间;
(1)求 A; e
2
(2)若 D是 BC 上的一点,且BD : DC =1:2, AD = 2,求 a 的最小值. (2)证明:当a e 时,不等式 f (x) 0恒成立.
19.(12 分)某单位组织知识竞赛,有甲、乙两类问题.现有 A,B,C 三位员工参加比赛,比赛规
则为:先从甲类问题中随机抽取一个问题回答,若回答错误则该员工比赛结束;若回答正确再从
乙类问题中随机抽取一个问题回答,无论回答正确与否,该员工比赛结束.每人两次回答问题的
过程相互独立.三人回答问题也相互独立.甲类问题中每个问题回答正确得 20 分,否则得 0 分;
乙类问题中每个问题回答正确得 80 分,否则得 0 分.已知 A 员工能正确回答甲类问题的概率为
0.5,能正确回答乙类问题的概率为 0.6;B 员工能正确回答甲类问题的概率为 0.6,能正确回答
第 3 页 共 4 页 第 4 页 共 4 页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}中学生标准学术能力诊断性测试 2023 年 9 月测试
数学参考答案
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1 2 3 4 5 6 7 8
B B B A C A C D
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选项中,有多项
符合题目要求.全部选对的得 5 分,部分选对但不全的得 3 分,有错选的得 0 分.
9 10 11 12
ABD ABD BCD ABC
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
24
13.
25 14. 46
64
15.
3 16.1
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(10 分)
2 2n + n (n 1) + n 1
(1) Sn = , S = , n 1
2 2
Sn Sn 1 = n = cn (n 1,n N) ·································································· 2 分
又c1 = S1 =1, cn = n (n N+ ) , a nn = 3 ······················································· 3 分
n 2 2
(2) dn = 3 (2n + 6n + 5) = (n +1) +1 3n+1 (n2 +1) 3n ····························· 7 分
T = (22n +1) 32 (12 +1) 3+ (32 +1) 33 (22 +1) 32 + +
2 2 2
(n +1) 3n (n 1) +1 3n 1 + (n +1) +1 3n+1 (n2 +1 3n )
2 2 n+1
= (1 +1) 3+ (n +1) +1 3
= (n2 + 2n + 2) 3n+1 6 ····································································· 10 分
18.(12 分)
(1) c = 2acos Acos B bcos2A(A B),
第1页 共6页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}
sinC = 2sin Acos Acos B sin Bcos2A ···················································· 2 分
sinC = sin 2Acos B sin Bcos2A= sin (2A B) 0 ··································· 4 分
又0 2A B ,则C = 2A B或C + 2A B = ,
若C = 2A B,则 A = ;
3
若C + 2A B = ,则 A= 2B,又 A B,不符合题意,舍去,
综上所述 A = ························································································· 6 分
3
2
2AB + AC 2 2AB + AC
(2) 2BD = DC, AD = , (AD) = ···························· 8 分
3 3
b2 +4c2 +2bc =36 ①,又a2 =b2 +c2 bc ②,
2
c c
2 2 4 + 2 +136 4c +b + 2bc b
= =
b
① ②得: ········································ 92 分
a2 b2 + c2 bc c c
+1
b b
c
令 = x ,又 A B, a b, a2 b2 , b2 + c2 bc b2 ,
b
c
c b, 0 = x 1,
b
4x2 + 2x +1 6x 3
令 f (x) = (0 x 1) , f (x) = 4+ ······························ 10 分
x2 x +1 x2 x +1
t +3
令6x 3 = t, x = ,
6
36t 36
f (t ) = 4+ ( 3 t 3) , f2 (t ) = 4+ ( 3 t 3)t + 27 27 ,
t +
t
27 27 36 6 7
又 t + 12或 t + 12, 1 f (t ) 7, 7, a ,
t t a2 7
6 7
所以当三角形 ABC 为等边三角形时a 最小,最小值为 ····························· 12 分
7
19.(12 分)
(1)设事件 A1为 A 员工答对甲类问题;设事件 A2 为 A 员工答对乙类问题;
设事件 B1为 B 员工答对甲类问题;设事件B2 为 B 员工答对乙类问题;
第2页 共6页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}
设事件C1 为 C 员工答对甲类问题;设事件C2 为 C 员工答对乙类问题;
三人得分之和为 20 分的情况有:
①A 员工答对甲类题,答错乙类题;B 与 C 员工均答错甲类题,
则 P(A1 A2 B1 C1 ) = P (A1 )P (A2 )P (B1 )P (C1 ) = 0.5 0.4 0.4 0.6 = 0.048
·············································································································· 2 分
②B 员工答对甲类题,答错乙类题;A 与 C 员工均答错甲类题,
P(B1 B2 A1 C1 ) = P (B1 )P (B2 )P (A1 )P (C1 ) = 0.6 0.5 0.5 0.6 = 0.09
·············································································································· 4 分
③C 员工答对甲类题,答错乙类题;A 与 B 员工均答错甲类题,
P(C1 C2 A1 B1 ) = P (C1 )P (C2 )P (A1 )P (B1 ) = 0.4 0.25 0.5 0.4 = 0.02,
所以三人得分之和为 20 分的概率为 0.048+0.09+0.02=0.158 ·································· 6 分
(2) A 员工得 100 分的概率为P(A1 A2 ) = P(A1) P(A2 ) = 0.3,
B 员工得 100 分的概率为P(B1 B2 ) = P(B1) P(B2 ) = 0.3,
C 员工得 100 分的概率为P(C1 C2 ) = P(C1) P(C2 ) = 0.3,
·············································································································· 9 分
X ~ B(3,0.3) ······················································································ 11 分
E (X ) = 3 0.3= 0.9 ············································································ 12 分
20.(12 分)
(1)取 AB的中点 N,连接 MN,NC,则线段MN为三角形 SAB的中位线,
MN SA,又SA⊥ BD, BD⊥MN ························································ 2 分
设直线 CN与直线 BD交于 Q点,
NQ BQ 1
则 BNQ CDQ, = = ,
NC BD 3
6 6
设 AD = a, CD = 2a, NC = a, NQ = a ,
2 6
3
同理BD = 3a, BQ = a,
3
a2 a2 2
又 NQ2 + BQ2
a
= + = = BN 2 ··························································· 5 分
6 3 2
BD⊥CN, BD⊥面MNC, MC ⊥ BD ··················································· 6 分
第3页 共6页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}
(2)分别以直线 AD,AB,AS为 x轴,y轴,z轴建立直角坐标系,
则 A(0,0,0) ,S (0,0,2),C (2,2 2,0), B (0,2 2,0), M (0, 2,1),
设 SP = SC,
P(2 ,2 2 ,2(1 )), AP = (2 ,2 2 ,2(1 )) ································· 8 分
又 AM = (0, 2,1) , AC = (2,2 2,0),
设平面 AMC的法向量n = (x, y, z),
n AM = 2y + z = 0
则 , n = ( 2,1, 2 ) ·········································· 10 分
n AC = 2x + 2 2y = 0
设直线 AP与平面 AMC所成的角为 ,
2 2 (1 ) 10
则 sin = cos AP,n = = ,
5 16 2 8 + 4 10
1 SP 1
= , = ·················································································· 12 分
2 SC 2
21.(12 分)
(1)设 MF = r , MF = r ,在 MF1F2 中,设 F1MF2 = 1 1 2 2 ,
2
F 21F2 = r1 + r
2
2 2r1r2 cos = 4c
2
,
2r r cos = r 2 + r 2 4c2
1
1 2 1 2 ,又MC = (MF1 +MF2 ),
2
2 2
2 1 2 2 1 r r
MC = (MF1 +MF 22 + 2MF1 MF2 ) = (r1 + r 22 + 2r r cos ) = 1 + 2 c2 , 1 2
4 4 2 2
2 2 2r (r + r ) 2r r2 1 r2 2 1 2 1 2 MC = + c = c2 = 2a2 c2 5 = 4 ························· 3 分
2 2 2
2a2 c2 = 9, a2 = 6, c2 = 3, b2 = 3,
x2 y2
所以椭圆C 的方程为: + =1 ······························································· 4 分
6 3
(2)设 A(x0 , y0 ), P(x1, y1),Q(x2, y2 ),直线 l的方程为 x = y+ t ,
第4页 共6页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}
x2 y2
+ =1
6 3 ( 2 + 2) y2 + 2t y + t2 6 = 0,
x = y + t
2t t 2 6
y1 + y2 = , y1y2 = , x1 = y1 + t, x2 = y + t , 2
2 + 2 2 + 2
4t 2t 2 6 2
x1 + x = , x x = ································································ 7 分 2 2 1 2 + 2 2 + 2
y y y y ( y0 y1 ) (x0 x2 )+ ( y0 y2 ) (x0 x0 1 1 )
设 +
0 2 =
x0 x1 x0 x2 (x0 x1 ) (x0 x2 )
2x0 y0 y0 (x1 + x2 )+ 2 y1y2 + (t x0 )( y1 + y2 )
= 2 x0 (x1 + x2 ) x0 + x1x2
2x 20 y0 + (2tx0 12) + 4y0 (x0 t )
= = p2
(x20 6) 2 + 2(x0 t )
若 p为常数,则2tx0 12 = 0 ····································································· 10 分
2x 4y0 y0 0 (x0 t ) 2y
即6 = tx ,而此时 = =
0
0 (x2
,
0 6)
2
2(x0 t ) x0 t
6
又 6 x0 6, 6 6 ,即 t 6 或 t 6 ,
t
6 18
综上所述,t 6 或 t 6 ,存在点 A , 3 2 ,使得直线 AP的斜率与直线 AQ
t t
2y0
的斜率之和为定值 ············································································ 12 分
x0 t
22.(12 分)
ln x (1 ln x) 1 ln x + x2
(1) g (x) = + x, g (x) = +1= ······································ 1 分
x x2 x2
1
令 h( 2x) =1 ln x + x2 ,h (x) = + 2x 0,即 x ,
x 2
2 2
所以函数h (x)在区间 ,+ 单调递增,在区间 0, 单调递减 ················· 3 分
2 2
第5页 共6页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}
2
又 hmin (x) = h 0, h x 0, g x 0 2
( ) ( ) ,
所以函数 g (x)在 (0,+ )上单调递增 ····························································· 5 分
eax
ln x
(2)不等式 e ea 0等价于 xeax 1 ln x ax 0
x
ax 1 1 ax 1
令 g (x) = xe ln x ax 0,g (x) = (1+ ax)(xe 1) ···························· 7 分
x
h(x) = xeax 1 1, h (x) = (ax+1)eax 1设 ,
1
当0 x ,h (x) 0,
a
1 1
所以函数h (x)在 0, 上单调递增,在 ,+ 上单调递减,
a a
1 1
h 2max (x) = h = (e + a),
a a
1
a e 2 , h = (e 2max + a) 0,
a
1 1
所以函数 g (x)在 ,+ 单调递增,在 0, 单调递减 ··························· 10 分
a a
1 1 1
gmin (x) = g
2
= e ln 1, 2
a a e a
1 1
令 = t,则 g
2 min (t ) = t ln t 1= m(t )(t (0,1)) ,m (t ) =1 , e a t
m(t )在 (0,1)单调递减,在 (1,+ )单调递增,
mmin (x) =m(1) = 0,m(t) 0,
gmin (x) 0, g (x) 0 ········································································ 12 分
即a e 2 时,不等式 f (x) 0恒成立.
第6页 共6页
{#{QQABCQqQogAgABIAAQhCQQVCCkCQkBEACAoGAFAAIAABwQFABAA=}#}