专题23解含绝对值符号的不等式(含解析)
专题23 解含绝对值符号的不等式
1.阅读:我们知道,于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:
解:(1)当,即时:
解这个不等式,得:
由条件,有:
(2)当,即时,
解这个不等式,得:
由条件,有:
∴如图,综合(1)、(2)原不等式的解为
根据以上思想,请探究完成下列2个小题:
(1);
(2).
2.请阅读下面求含绝对值的不等式和的解集过程.
对于含绝对值的不等式,从图1的数轴上看:大于-3而小于3的数的绝对值小于3,所以的解集为;对于含绝对值的不等式,从图2的数轴上看:小于-3或大于3的数的绝对值大于3,所以的解集为或.
(1)含绝对值的不等式的解集为______;
(2)已知含绝对值的不等式的解集为,求实数,的值;
(3)已知关于,的二元一次方程的解满足,其中是正数,求的取值范围.
3.不等式的解集是 .
4.如果|x|>3,那么x的范围是
5.若|2a﹣6|>6﹣2a,则实数a的取值范围是 .
6.不等式的解集是 .
7.若关于的不等式有解,则的取值范围是 .
8.不等式组的解集是( )
A. B. C. D.
9.解不等式:|x-1|+|x-3|>4.
10.解不等式:
11.解不等式:
(1)
(2)
12.解下列不等式:
(1)
(2)
13.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上所对应的点与所对应的点之间的距离.
⑴. 发现问题:代数式的最小值是多少?
⑵. 探究问题:如图,点分别表示的是 ,.
∵的几何意义是线段与的长度之和
∴当点在线段上时,;当点点在点的左侧或点的右侧时
∴的最小值是3.
⑶.解决问题:
①.的最小值是 ;
②.利用上述思想方法解不等式:
③.当为何值时,代数式的最小值是2.
14.阅读下面材料:
小明在数学课外小组活动时遇到这样一个问题:
如果一个不等式(含有不等号的式子)中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式.
求绝对值不等式的解集(满足不等式的所有解).
小明同学的思路如下:
先根据绝对值的定义,求出恰好是3时的值,并在数轴上表示为点,,如图所示.观察数轴发现,
以点,为分界点把数轴分为三部分:
点左边的点表示的数的绝对值大于3;
点,之间的点表示的数的绝对值小于3;
点B右边的点表示的数的绝对值大于3.
因此,小明得出结论,绝对值不等式的解集为:或.
参照小明的思路,解决下列问题:
(1)请你直接写出下列绝对值不等式的解集.
①的解集是 ;
②的解集是 .
(2)求绝对值不等式的解集.
(3)直接写出不等式的解集是 .
15.请阅读求绝对值不等式和的解集的过程.
对于绝对值不等式,从图1的数轴上看:大于而小于3的数的绝对值小于3,所以的解集为;
对于绝对值不等式,从图2的数轴上看:小于或大于3的数的绝对值大于3,所以的解集为或.
(1)求绝对值不等式的解集;
(2)已知绝对值不等式的解集为,求的值;
16.阅读下列材料并解答问题:
我们知道的几何意义是在数轴上数对应的点与原点的距离:,也就是说,表示在数轴上数与数0对应点之间的距离;
这个结论可以推广为表示在数轴上数和数对应的点之间的距离;
例1解方程,容易看出,在数轴上与原点距离为2的点对应的数为,即该方程的解为.
例2解不等式,如图,在数轴上找出的解,即到1的距离为2的点对应的数为,3,则的解集为或.
例3解方程由绝对值的几何意义知,该方程表示求在数轴上与1和的距离之和为的对应的的值.在数轴上,1和的距离为3,满足方程的对应的点在1的右边或的左边,若对应的点在1的右边,由下图可以看出;同理,若对应的点在的左边,可得,故原方程的解是或.
回答问题:(只需直接写出答案)
①解方程
②解不等式
③解方程
参考答案:
1.(1)-3≤x≤1;(2)x≥3或x≤1.
【分析】(1)分①x+1≥0,即x≥-1,②x+1<0,即x<-1,两种情况分别求解可得;
(2)分①x-2≥0,即x≥2,②x-2<0,即x<2,两种情况分别求解可得.
【详解】解:(1)|x+1|≤2,
①当x+1≥0,即x≥-1时:x+1≤2,
解这个不等式,得:x≤1
由条件x≥-1,有:-1≤x≤1;
②当x+1<0,即 x<-1时:-(x+1)≤2
解这个不等式,得:x≥-3
由条件x<-1,有:-3≤x<-1
∴综合①、②,原不等式的解为:-3≤x≤1.
(2)|x-2|≥1
①当x-2≥0,即x≥2时:x-2≥1
解这个不等式,得:x≥3
由条件x≥2,有:x≥3;
②当x-2<0,即 x<2时:-(x-2)≥1,
解这个不等式,得:x≤1,
由条件x<2,有:x≤1,
∴综合①、②,原不等式的解为:x≥3或x≤1.
【点睛】本题主要考查绝对值不等式的求解,熟练掌握绝对值的性质分类讨论是解题的关键.
2.(1)或
(2)
(3)
【分析】(1)由绝对值的几何意义即可得出答案;
(2)由知,据此得出,再结合可得出关于a、b的方程组,解之即可求出a、b的值
(3)由知 ,据此得出,解之求出m的取值范围,继而可得答案.
【详解】(1)解:根据绝对值的定义得:或,
故答案为:或;
(2)解:∵,
∴,
解得,
∵不等式的解集为,
∴,
解得:,
∴实数 ,;
(3)解:∵,
∴,
∵,
∴,
解得,
又m是正数,
∴.
【点睛】本题主要考查解一元一次不等式, 解题的关键是掌握绝对值的几何意义及解一元一次不等式和不等式组的能力.
3.##
【分析】根据“|a|”的几何意义是:数a在数轴上对应的点到原点的距离即可解答.
【详解】解:根据绝对值的几何意义可得:“”可理解为数在数轴上对应的点到原点的距离小于,
不等式的解集是.
故答案为:.
【点睛】本题考查了绝对值的几何意义,利用数形结合是解决本题的关键.
4.或
【分析】首先算出|x|=3的解,然后根据“大于取两边”的口诀得解 .
【详解】解:由绝对值的意义可得:
x=3或x=-3时,|x|=3,
∴根据“大于取两边”即可得到|x|>3的解集为:x>3或 x< 3(如图),
故答案为:x>3或 x< 3.
【点睛】本题考查绝对值的意义及不等式的求解,熟练掌握有关不等式的求解方法是解题关键.
5.a>3.
【分析】分三种情况考虑:当2a﹣6>0,2a﹣6=0,与2a﹣6<0时,利用绝对值的代数意义化简,即可求出a的范围.
【详解】解:当2a﹣6>0,即a>3时,不等式变形为2a﹣6>6﹣2a,
解得:a>3;
当2a﹣6=0,即a=3时,不等式不成立;
当2a﹣6<0,即a<3时,不等式不成立,
综上,实数a的范围为a>3.
故答案为:a>3.
【点睛】此题考查了解一元一次不等式,以及绝对值的代数意义,利用了分类讨论的数学思想,熟练掌握绝对值的代数意义是解本题的而关键.
6.
【详解】解:x<-1时,-x+3+x+1>2,
4>2
∴x<-1,
-1≤x≤3时,
-x+3-x-1>2,
x<0;
x>3时,x-3-x-1>6,不成立.
故答案是:x<0
【点睛】考查绝对值不等式的解法,考查学生的计算能力,比较基础.
7.
【分析】根据绝对值的几何意义,可把视为数轴上表示数x的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,得到当x位于第8个点时,取得最小值15,即可求出a的取值范围.
【详解】解:由绝对值的几何意义可得,
把视为数轴上表示数x的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,
∴当x位于第8个点时,即当x=-4时,
的最小值为15,
∵,
∴当关于的不等式有解时,
a的取值范围是.
故答案为:.
【点睛】此题考查了绝对值的几何意义和不等式性质,解题的关键是根据题意求得的最小值.
8.C
【分析】先求出每个不等式的解集,然后求出不等式组的解集即可得到答案.
【详解】解:∵,
∴,
解不等式①得:,
解不等式②得:,
解不等式③得:,
∴不等式组的解集为,
故选C.
【点睛】本题主要考查了解不等式组和含绝对值的不等式,解题的关键在于能够熟练掌握相关知识进行求解.
9.x<0或x>4
【详解】试题分析:此题是一个带绝对值的复合不等式,应分为x≤1,1<x≤3,x>3,三种情况,再根据绝对值的性质化简原式,解不等式即可.
试题解析:当x≤1时,原式可变形为
1-x+3-x=4-2x>4,解得x<0.
当1<x≤3时,原式可变形为
x-1+3-x>4,得2>4,不合题意.
当x>3时,原式可变形为
x-1+x-3=2x-4>4,解得x>4.
∴x<0或x>4.
点睛:此题主要考查了带绝对值的复合不等式的解法,解题关键是要根据绝对值的性质,分情况讨论,然后根据绝对值的性质求解不等式既能解决,解题时注意不等式的基本性质的应用.
10.x<-5或x>1
【分析】根据相应的x的特殊值进行分段,从而去绝对值化简,再分别求解,最后将解集合并.
【详解】解:令,解得:x=±4,
令,解得:x=,
∴当x<-4时,,
解得:x<-5,
∴此时x<-5;
当-4≤x<时,,
解得:x<-7,
∴此时无解;
当≤x<0时,,
解得:x>,
∴此时无解;
当0≤x<4时,,
解得:x>1,
∴此时1<x<4;
当x≥4时,,
解得:x>3,
∴此时x≥4;
综上:不等式的解集为:x<-5或x>1.
【点睛】本题考查了绝对值不等式的解法,解题时要结合绝对值的意义进行分段,分别求解,注意最后要合并解集.
11.(1)
(2)或
【分析】(1)根据绝对值的意义,即可求出不等式的解集;
(2)根据绝对值的意义,即可求出不等式的解集.
【详解】(1)解:∵,
∴.
(2)∵,
原不等式变形为:或,
解得:或.
【点睛】本题考查了解不等式,解题的关键是掌握绝对值的意义进行解题.
12.(1)或;(2)
【分析】根据绝对值的意义,分类讨论,再解一元一次不等式不等式即可.
【详解】(1)
当时,则,解得,
,
当时,则,解得,
,
综上,或;
(2)
当,即时,,解得,
,
当时,则,解得,
,
综上,.
【点睛】本题考查了解一元一次不等式,根据绝对值的意义,分类讨论是解题的关键.
13.①6;②或;③或
【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;
②根据题意画出相应的图形,确定出所求不等式的解集即可;
③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.
【详解】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x,
∴表示数轴上的点P到4的距离,用线段PA表示,
表示数轴上的点P到-2的距离,用线段PB表示,
∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,
且线段AB的长度为6,
∴的最小值为6.
故答案为:6.
②设A表示-3,B表示1,P表示x,
∴线段AB的长度为4,则,
的几何意义表示为PA+PB,
∴不等式的几何意义是PA+PB>AB,
∴P不能在线段AB上,应该在A的左侧或者B的右侧,
即不等式的解集为或.
故答案为:或.
③设A表示-a,B表示3,P表示x,
则线段AB的长度为,
的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,
∴
∴或,
即或;
故答案为:或.
【点睛】此题考查了解一元一次不等式,数轴,绝对值,以及数学常识,掌握绝对值的几何意义,学会分类讨论是解决本题的关键.
14.(1)①x>1或x<-1;②-2.5<x<2.5;(2)x>7或x<-1;(3)x>2或x<-2
【分析】(1)根据题中小明的做法可得;
(2)将化为后,根据以上结论即可得;
(3)求不等式的解集实际上是求|x|>2的解集即可.
【详解】解(1)由题意可得:
①令|x|=1,x=1或-1,如图,数轴上表示如下:
∴|x|>1的解集是x>1或x<-1;
②令|x|=2.5,x=2.5或-2.5,如图,数轴上表示如下:
∴|x|<2.5的解集是-2.5<x<2.5;
(2),化简得,
当时,x=-1或7,如图,数轴上表示如下:
可知:的解集为:x>7或x<-1;
(3)不等式x2>4可化为|x|>2,如图,数轴上表示如下:
可知:不等式x2>4的解集是 x>2或x<-2.
【点睛】本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.
15.(1)或
(2)
【分析】(1)由绝对值的几何意义即可得出答案;
(2)由|2x 1|<a知 a<2x 1<a,据此得出,再结合b<x<3可得出关于a、b的方程组,解之即可求出a、b的值,从而得出答案.
【详解】(1)根据绝对值的定义得:或,
解得或;
(2),
,
解得,
解集为,
,
解得,
∴.
【点睛】本题主要考查解一元一次不等式,绝对值的几何意义,解题的关键是掌握绝对值的几何意义及解一元一次不等式和不等式组的基本步骤.
16.①或②或③或
【分析】①根据题意可以求得方程的解;
②根据题意可以求得不等式得解集;
③讨论的不同取值范围可以求得方程的解.
【详解】①解方程
∵在数轴上与距离为4的点的对应数为,1,
∴这个方程的解为或;
②解不等式,
如图3,在数轴上找出的解,
∵在数轴上到3的距离为4的点对应的数为,7,
∴的解集为或;
③,
当时,
,
∴;
当时,
,
∴不能使得成立;
当时,
,
∴当时,不能使得成立;
当时,
,
解得,;
故的解是或.
【点睛】本题考查了含绝对值符号的一元一次方程的解法,弄懂阅读材料中的方法,利用分类讨论思想是解本题的关键.